
Math. Sci. Lett.4, No. 3, 313-317 (2015) 313

Mathematical Sciences Letters
An International Journal

http://dx.doi.org/10.12785/msl/040315

Solution of a Quadratic Non-Linear Oscillator by Elliptic
Homotopy Averaging Method

A. M. El-Naggar1 and G. M. Ismail 2,∗

1 Department of Mathematics, Faculty of Science, Benha University, Egypt
2 Department of Mathematics, Faculty of Science, Sohag University, 82524, Sohag, Egypt

Received: 7 May 2015, Revised: 21 Jul. 2015, Accepted: 23 Jul. 2015
Published online: 1 Sep. 2015

Abstract: In this paper, the periodic solutions of a strongly quadratic nonlinear oscillator whose motion is described with the
generalized Van der Pol equation are studied. A new method based on homotopy and averaging is employed to determine the limit
cycle motion. Three types of quadratic nonlinearity are considered: the coefficients of the linear and quadratic terms are positive, the
coefficient of the linear term is positive and that of the quadratic term is negative and the opposite case. Comparison with the numerical
solutions is also presented, revealing that the present method leads to accurate solutions.
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1 Introduction

Over the last century, perturbation methods based on
circular functions have been successfully developed to
accurately determine approximate solutions for weakly
non linear oscillators in the form

ẍ+ c1x = ε f (x, ẋ). (1)

Here c1 is a constant,ε a small positive parameter.
Classical methods, such as harmonic balance,
Lindstedt–Poincaré, Krylov–Bogoliubov–Mitropolski,
averaging and multiple scales [1,2,3,4], have been
conducted to approximate periodic solutions of Eq.(1).

Recently, many authors have been developing various
elliptic function methods such as elliptic harmonic
balance method, elliptic Krylov-Bogoliubov method,
elliptic averaging method, elliptic Galerkin method,
elliptic Rayleigh method, elliptic perturbation method,
elliptic Lindstedt-Poincaré method and elliptic homotopy
averaging method [5,6,7,8,9,10,11,12,13,14]. However,
most of these methods are related to cubic nonlinear
oscillators, and very few of them have analyzed the
equation with quadratic nonlinearity.

In this paper the elliptic homotopy averaging method
was presented by authors [14] for certain oscillators
having cubic nonlinearity will be used to analyze the

periodic solutions of quadratic nonlinear oscillators of the
form

ẍ+ c1x+ c2x2 = ε f (x, ẋ) (2)

which are associated with many physical systems such as
betatron oscillators and vibration of shells. It is therefore
also an important area of nonlinear vibration
investigation. The analytical solution was enough to
explain some of the phenomena which occur in the real
systems. For example, in a Van der Pol electrical circuit
the existence of a limit cycle was explained by the energy
store in the capacitor during the slowly varying part of the
motion, while during the abrupt changes the energy was
being suddenly released. Unfortunately, the quantitative
values obtained analytically were not enough accurate.
This was the reason why the Van der Pol equation was
extended with nonlinear terms. The generalized Van der
Pol oscillator is

ẍ+ c1x+ c2x2 = ε
(

c0− c3x2) ẋ, (3)

whereε is a constant which is often assumed to be small
(ε ≪ 1), ci wherei = 0, ...,3 are constant coefficients and
dots denote derivatives with respect to timet.
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2 The solution of the generating equation

We first solve the so-called generating equation of Eq.(2).

ẍ+ c1x+ c2x2 = 0. (4)

with initial conditions:

x(0) = q, ẋ(0) = 0. (5)

Eq. (4) has an exact analytical solution which can be
expressed by Jacobian elliptic function. Let the solution
be denoted by

x = a ep2(ωt,k2)+ b, (6)

here ep(ωt,k2) denotes a convenient Jacobian elliptic
function:sn(ωt,k2), cn(ωt,k2) or dn(ωt,k2) according to
the type of Eq.(4) which depends on the sign ofc1 and
c2. The constantsa, ω andk2 are called the amplitude, the
angular frequency and the modulus of the elliptic
function, respectively, andb is called the bias. (A survey
of elliptic functions is given in the Appendix). The
constantsω , b andk2 are the known values which depend
on a. Three types of Eq.(4) will be discussed in detail:
(a)c1 > 0 andc2 > 0, (b)c1 > 0 andc2 < 0 and (c)c1 < 0
and c2 > 0. All the three types of equations have a
physical meaning: case (a) corresponds to the oscillator
with a hardening spring [1], case (b) to the oscillator with
a softening spring [1] and case (c) is the first modal
equation of transversal vibrations of a cantilever beam,
for example, Refs. [15,16,17].

Type I : c1> 0, c2> 0.
For this type of oscillator the generating function is as

follows [11]:

x = a cn2(ωt,k2)+ b. (7)

Substituting Eq.(7) into Eq.(4) and equating coefficients
by the same order of functioncn τ, the values ofk2, a, b,
andω are obtained as:

a =
6ω2k2

c2
, (8)

b =
−
[

4ω2(2k2−1)+ c1
]

2c2
, (9)

ω4 =
c2

1

16(k4− k2+1)
. (10)

Type II : c1> 0, c2< 0.
It is worth pointing out that whenc1> 0, c2< 0, the

solution of Eq.(4) can be expressed by

x = a1 sn2τ + b1, (11)

where
a1 =−a, b1 = a+ b. (12)

It can be shown that Eq.(11) is indeed identical to Eq.(7),
because

a cn2τ + b = a(1− sn2τ)+ b = a1 sn2τ + b1. (13)

Type III : c1 < 0, c2 > 0.
Similarly, whenc1 < 0, c2 > 0, the solution of Eq.(4)

can be expressed by

x = a2 dn2τ + b2, (14)

here
a2 =

(

a/k2) , b2 = a+ b− a/k2. (15)

It can also be proved that Eq.(14) is equivalent to Eq.(7).
Therefore, one can use Eqs.(7) and(8−10) as a unified
solution of Eq.(4) later.

3 Basic idea of the elliptic homotopy
averaging method

To explain this method, let us consider the following
function:

A(x)− f (r) = 0, r ∈ Ω , (16)

with the boundary conditions of:

B(x,∂x/∂n) = 0, r ∈ Γ , (17)

whereA, B, f (r) andΓ are a general differential operator,
a boundary operator, a known analytical function and the
boundary of the domainΩ , respectively.

Generally speaking the operatorA can be divided into
two partsF andN whereF is a linear, andN is nonlinear.
Therefore, Eq.(16) can be written as follows:

F(x)+N(x)− f (r) = 0. (18)

By the homotopy technique see [18,19,20,21], we
construct a homotopy of Eq.(16) x(r, p) : Ω × [0,1]→ R
which satisfies:

H(x, p) = (1− p) [F(x)−F(x0)]
+p [A(x)− f (r)] = 0, p ε[0,1], r ∈ Ω ,

(19)

which is equivalent to

H(x, p) = F(x)−F(x0)+ pF(x0)+ p [N(x)− f (r)] = 0,
(20)

wherep ε[0,1] is an embedding parameter, andx0 is an
initial approximation which satisfies the initial conditions.
By introducing an embedding parameterp with values in
the interval[0,1], a transformation of the variablex(t) to
X(t, p) is done. The homotopy transformed Eq.(3) is

(1− p)
[

(Ẍ + c1X + c2X2)− (ẍ0+ c1x0+ c2x2
0)
]

+p
[

(Ẍ + c1X + c2X2)− ε(c0Ẋ − c3X2 Ẋ)
]

= 0,
(21)
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with transformed initial condition(5)

X(0, p) = q, Ẋ(0, p) = 0, (22)

wherex0 ≡ x0(t) is the initial approximate solution which
has the form of(6)

x0 = a ep2(ωt,k2)+ b ≡ a ep2+ b. (23)

Using the Maclaurin series expansion

X(t, p) = x0(t)+
∞

∑
n=1

(xn

n!

)

pn, n = 1,2,3, ..., (24)

where

xn ≡ xn(t) =

(

∂X(t, p)
∂ pn

)

p=0
, (25)

the nonlinear differential Eq.(21) is transformed into the
system ofn linear differential equations

p0 : ẍ0+ c1x0+ c2x2
0 = 0, (26)

p1 : ẍ1+ c1x1+2c2x0x1+(ẍ0+ c1x0+ c2x2
0)

= ε(c0ẋ0− c3x2
0ẋ0).

(27)

Applying Eq. (23) the differential Eq. (27) is
transformed into the first order deformation equation

ẍ1+ c1x1+2c2
(

a ep2+ b
)

x1

= ε
(

c0a(ep2)̇− c3a
(

a ep2+ b
)2
(ep2)̇

) (28)

The relation (28) is a nonlinear nonhomogeneous
differential equation with time variable coefficient. To
find the exact analytical solution for the Eq.(28) is not an
easy task. Our aim is not to solve the equation but to
determine the amplitude of steady-state motion.

Due to the property of the series expansion(25) and
the form of the left side of the Eq.(27) the solution of
(28) is assumed in the form of the first time derivative of
the elliptic function in(23)

x1 = c(ep2)̇, (29)

wherec is a constant. Substituting the assumed solution
(29) into (28) we obtain

c
[

(ep2
...
) + c1(ep2)̇+2c2

(

a ep2+ b
)

(ep2)̇
]

= ε
[

c0a(ep2)̇− c3a
(

a ep2+ b
)2
(ep2)̇

]

.
(30)

This is the moment when the averaging procedure is
introduced. The averaging is done for the period of
elliptic function 4K(k2), whereK(k2)≡ K is the complete

elliptic integral of the first kind [22]. The averaged
relation(30) is

c

[

〈

(ep2
...
) (ep2)̇

〉

+ c1

〈

[

(ep2)̇
]2
〉

+
[

(ep2)̇
]2

×2c2(a ep2+ b)
]

= ε
[

c0a

〈

[

(ep2)̇
]2
〉

−c3a

〈

(a ep2+ b)2
[

(ep2)̇
]2
〉]

,

(31)

where〈...〉 = 1
4K

∫ 4K
0 (...)dτ, τ = ωt. The left side of the

Eq. (31) is always zero and the right side represents the
condition for limit cycle motion

(

c0− c3b2
)

〈

[

(ep2)̇
]2
〉

−2c3ab

〈

(ep)2
[

(ep2)̇
]2
〉

−c3a2

〈

(ep)4
[

(ep2)̇
]2
〉

= 0.

(32)

Solving the system of algebraic Eqs.(8−10) and(32),
the constantsa, ω , b andk2 are obtained.

4 A study of the type I of generalized Van der
Pol oscillator

As an application of the elliptic homotopy averaging
method, type I of the generalized Van der Pol oscillator is
studied in detail.

Oscillator type I : c1> 0, c2 > 0 For this type of
oscillator the generating solution is

x = a cn2(ωt,k2)+ b = a cn2+ b. (33)

According to the aforementioned procedure the solution of
(27) is assumed

x1 = c(cn2)̇ =−2cωcn sn dn, (34)

wherec is a constant. Substituting(34) into relation(32)
we obtain

(c3q3)a
2+(2c3b q2)a−

(

c0− c3b2)q1 = 0, (35)

where

q1 = M2− (k2+1)M4+ k2M6

= 4
15k2

[

(−2+3k2− k4)K +2(1− k2+ k4)E
]

,

q2 = M2− (k2+2)M4+(2k2+1)M6− k2M8

= 4
105k6

[(

8−23k2+18k4−3k6
)

K
+

(

−8+19k2−9k4+6k6
)

E
]

,
q3 = M2− (k2+3)M4+(3k2+3)M6

−(3k2+1)M8+ k2M10

= 4
315k8

[(

−16+64k2−93k4+50k6−5k8
)

K
+

(

−16−56k2+66k4−20k6+10k8
)

E
]

,
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Fig. 1: Limit cycle solutions of Eq. (37) obtained analytically
(—) and numerically (- - -).

hereM2n, n = 1, ...,5 are the averaged elliptic functions
which are given in the Appendix, andE ≡ E(k2) is the
complete elliptic integral of the second kind [23].

From the amplitude modulation Eq.(35), the
stationary amplitude is obtained by solving the algebraic
Eq.(35). Thus, the stationary amplitudea, which must be
positive, is given by

a =
−(2c3bq2)±

√

(2c3bq2)
2+4(c3q3)(c0− c3b2)q1

2c3q3
.

(36)
Solving Eq.(8−10), and(36) the parameters of the orbital
motionk2, a, b, andω are obtained.

5 Application.

Consider the equation

ẍ+0.9x+0.9x2 = ε
(

0.1− x2) ẋ. (37)

From Eqs.(8−10) and(36), we haveω = 0.501186, a =
1.22047, b = −0.755452 andk2 = 0.728825. Using the
analytical solution in the first approximation

x = 1.22047cn2(0.501186t,0.728825)−0.755452. (38)

The approximate solution(38) and the solution obtained
by fourth-order Runge-Kutta method are compared in
Figure 1 forε = 0.1, the results of our computations show
that the two solutions are in good agreement.

6 Conclusion

The elliptic homotopy averaging method applied is an
efficient tool for calculating periodic solutions to strongly

quadratic nonlinear oscillatory systems. Illustrative
example show that the results of the present method are in
excellent agreement with those obtained by a fourth order
Runge-Kutta method.

Appendix: Elliptic functions

For the convenience of our readers, we collect some facts
on Jacobian elliptic functions (see ref [22]) for details.
Jacobian elliptic functions satisfy algebraic relations
which are analogous to those for trigonometric functions.
The fundamental three elliptic functions are
cn(τ,k), sn(τ,k), and dn(τ,k). Each of the elliptic
functions depends on the modulusk as well as the
argumentτ. Note that the elliptic functionssn andcn may
be thought of as generalizations of sin and cos where their
period depends on the modulusk.

The elliptic functions satisfy the following identities,
which are analogous to sin2+cos2=1:

sn2+ cn2 = 1, k2sn2+ dn2 = 1, k2cn2+1− k2 = dn2.

Before the averaging it is very convenient to transform all
the elliptic functions to sinus elliptic function

sn2cn2 = sn2− sn4,
sn2dn2 = sn2− k2sn4,
cn2dn2 = 1− (1+ k2) sn2+ k2sn4,
sn2 cn2 dn2 = sn2− (k2+1) sn4+ k2sn6,
sn2 cn4 dn2 = sn2− (k2+2) sn4+(2k2+1) sn6− k2sn8,
sn2 cn6 dn2 = sn2− (k2+3) sn4+(3k2+3) sn6

−(3k2+1)sn8+ k2sn10.

Averaging the sinus elliptic functions according to [22]
one gets

M2 =

∫ 4K

0
sn2 dτ =

4
k2 [K −E] ,

M4 =
∫ 4K

0
sn4 dτ =

4
3k4

[

(2+ k2)K −2(1+ k2)E
]

,

M6 =

∫ 4K

0
sn6 dτ =

4
15k6 [(8+3k2+4k4)K

−(8+7k2+8k4)E],

M2m+2 =

∫ 4K

0
sn2m+2 dτ =

2m(1+ k2)M2m +(1−2m)M2m−2

(2m+1)k2 .
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